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Abstract

The retrieval of a unique crystal potential from the
scattering matrix S in high-energy transmission electron
diffraction is discussed. It is shown that, in general, data
taken at a single orientation are not suf®cient to
determine all the elements of S. Additional measure-
ments with tilted incident beam are required for the
determination of the whole S matrix. An algorithm for
the extraction of the crystal potential from the S matrix
measured at a single energy and thickness is presented.
The limiting case of thin crystals is discussed. Several
examples with simulated data are considered.

1. Introduction

The general solution of the phase and inversion
problems in constructing the projected crystal potential
from dynamical electron diffraction patterns has
recently been discussed by Allen et al. (1998) and
Spence (1998). Allen et al. considered the case where
only the intensities of diffracted beams are measured.
The method is based on a through-tilt series of
measurements of intensities for speci®c well determined
orientations of the incident beam which determine the
moduli of all elements of the scattering matrix S for a
chosen principal orientation of the incident beam rela-
tive to a crystalline slab of given thickness t. Using
unitarity and the speci®c form of the scattering matrix
(including symmetries), an overdetermined set of
nonlinear equations is obtained from this intensity data.
Solution of these equations yields the required phases of
the elements of S and at the same time allows the
determination of the Bethe matrix A which contains the
Fourier coef®cients of the (projected) crystal potential.
The potential obtained is unique up to an arbitrary shift
of the origin (and this is what we will mean when we say
that the potential is unique in what follows). Intensity
data for only a single energy and a single thickness are
required. The approach of Spence proposes the use of
phase information in coherent convergent-beam elec-

tron diffraction (CBED) patterns, which are such that
adjacent beams overlap, to obtain not only the moduli
but also the phases of the elements of the S matrix (once
again using a through-tilt series of measurements). In
Spence's approach, the extra experimental information
(the phases of the elements of S) allows the phase and
inversion problems to be decoupled into two separate
steps whereas in the approach of Allen et al. the retrieval
of the phases of S and the inversion step Sÿ!A are
intertwined. Spence's method of inversion to retrieve A
from S requires data at several thicknesses (or energies)
to obtain a unique potential. In this paper, we will show
that, by choosing the principal incident orientation
appropriately, the projected potential can be obtained
uniquely from a knowledge of S for a single energy and
a single thickness via the solution of a set of linear
equations. This is considerably simpler than the inver-
sion method of Spence and the uniqueness of the
potential obtained is easily addressed.

Measurement of all the complex elements of S as
suggested by Spence (1998) is equivalent to determining
the exit-surface wave function for the principal orien-
tation (which de®nes the structure of S) as well as for
well de®ned secondary orientations of the incident
beam. Several methods have been proposed for retrieval
of the complex wave function at the exit surface of a
crystal. These methods include holography (Lichte,
1991) and the combination of images recorded in a
through-focus series (Kirkland, 1984; Tonomura, 1987;
Lichte, 1991; Coene et al., 1992; Gribelyuk & Hutchison,
1992; Van Dyck et al., 1996). Several attempts have been
made to exploit this information to retrieve the
projected crystal potential by inversion, for example the
proposals of Gribelyuk (1991), Beeching & Spargo
(1993) and Lentzen & Urban (1996). In contrast to the
method proposed by Spence (1998), all of these
approaches only work satisfactorily for thin crystals. A
common feature of these approaches is that they all start
from the exit-surface wave function for a single orien-
tation, which corresponds to knowing only a single
column of S. In this paper, we will show that when the
crystal is thick enough (at a given energy of the beam)
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there is, in general, insuf®cient information in this exit-
surface wave function to determine the projected
potential uniquely when dynamical effects are impor-
tant. This lack of information must be overcome by
measuring the exit wave function at other secondary
well de®ned orientations of the incident beam.

So using either the method of Spence (1998) based on
overlapping CBED discs or the methods of exit-plane-
wave retrieval discussed in the previous paragraph, we
can, in principle, determine the amplitude as well as the
phase of all the complex elements of the scattering
matrix S for a given principal orientation. The holo-
graphic and through-focus imaging methods are,
however, constrained by the information resolution limit
of the image-forming lens, whereas, since only adjacent
orders need interfere, the CBED method is not. The
CBED method provides information beyond the infor-
mation resolution limit, limited ultimately only by
Debye±Waller factors (Nellist et al., 1995). The intensity
at the midpoint of the overlap is unaffected by spherical
aberration. Unlike the method of Allen et al. (1998),
which proceeds from intensities (amplitudes) in a point
diffraction pattern only, and in which the solution of the
phase and inversion problems is intertwined, we are
then left with the independent step Sÿ!A. Exploiting
the fact that the diagonals of the Bethe matrix A are
known for a given principal orientation and that A has
certain general symmetries, we will show that for most
choices of the principal orientation A, and hence the
Fourier coef®cients of the projected crystal potential,
can be uniquely retrieved from S.

We do not include absorption in the considerations of
the present paper because it would be an unnecessary
complication for the questions of principle discussed
here. Apart from this, the neglect of absorption is a
justi®ed assumption for thin crystals and has also been
made in other very recent related work (Cheng et al.,
1996; Lentzen & Urban, 1996).

2. The direct scattering problem

The SchroÈ dinger equation for the scattering of high-
energy electrons from the periodic crystal potential can
be cast in the form of an eigenvalue problem as follows
(Humphreys, 1979; Allen & Rossouw, 1989; Allen et al.,
1998; Spence, 1998):

AC � 2KC� i�D; �1�

where � �D denotes a diagonal matrix. For discussion of
the assumptions implicit in this equation and the
constraints on its validity, see Allen & Rossouw (1989)
and references therein. We will refer to the solution of
the SchroÈ dinger equation, following standard usage, as
the direct scattering problem (Chadan & Sabatier, 1989;
Zakhariev & Suzko, 1990).

The matrix A on the left-hand side of (1) is of the
form

A �

..

. ..
. ..

. ..
. ..

.

. . . ÿ�kt � h�2 Uhÿg Uh Uh�g U2h . . .

. . . Ugÿh ÿ�kt � g�2 Ug U2g Ug�h . . .

. . . Uÿh Uÿg ÿk2
t Ug Uh . . .

. . . Uÿgÿh Uÿ2g Uÿg ÿ�kt ÿ g�2 Uÿg�h . . .

. . . Uÿ2h Uÿhÿg Uÿh Uÿh�g ÿ�kt ÿ h�2 . . .

..

. ..
. ..

. ..
. ..

.

0BBBBBBBBBBB@

1CCCCCCCCCCCA
:

�2�

Here the off-diagonal elements Ug are Fourier coef®-
cients of the crystal potential resulting in elastic scat-
tering and g and h are reciprocal-lattice vectors. The
wavevector kt is the tangential component of the inci-
dent electron wavevector k in vacuum along the plane
de®ned by the reciprocal-lattice vectors. K is the
magnitude of the incoming wavevector corrected for
refraction, i.e. K2 � k2 � U0, where U0 is the mean
crystal potential.

Since the potential is real, Ug � U�ÿg and conse-
quently A is hermitian. Furthermore, we have made the
tacit assumption that, for every reciprocal-lattice vector
g, the vector ÿg is included in the representation of A
and this leads to symmetry across the `anti-diagonal' of
A. In an N-beam approximation, A is an N � N matrix.
RepresentingA by fAm;ng, where m and n label rows and
columns, respectively, we express this symmetry as
follows:

Am;n � AN�1ÿn;N�1ÿm; with m 6� n if kt 6� 0:

�3�
The matrix C has as columns the eigenvectors of A and
takes the form

C �

..

. ..
. ..

. ..
.

C1
h C2

h . . . Ci
h . . .

C1
g C2

g . . . Ci
g . . .

C1
0 C2

0 . . . Ci
0 . . .

C1
ÿg C2

ÿg . . . Ci
ÿg . . .

C1
ÿh C2

ÿh . . . Ci
ÿh . . .

..

. ..
. ..

. ..
.

0BBBBBBBBBB@

1CCCCCCCCCCA
: �4�

Since A is hermitian, the eigenvectors of A are
orthogonal to each other and C is a unitary matrix. From
(1), we obtain a spectral representation of A,

Ag;h � 2K
P

i

Ci
g

iCi�
h ; �5�

where the sum extends over N terms within the frame-
work of an N-beam approximation.

The elements of the matrix C and the eigenvalues
2K i allow us to construct the wave function of the fast
electron in the crystal as a sum of Bloch states,

(2)
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 �r� �P
i

�i'i�r� �P
i

�i
P

g

Ci
g exp�i�ki � g� � r�: �6�

Each Bloch state 'i�r� is characterized by an intrinsic
wavevector ki, which depends on the energy of the
incident beam as well as on the crystal structure and can
be obtained from the solution of the SchroÈ dinger
equation. The wavevectors ki can be expressed in the
form ki � K�  in̂ (Humphreys, 1979; Allen &
Rossouw, 1989), where K is the wavevector of the
incoming plane wave in the crystal. The unit vector n̂ is a
surface normal directed into the top crystal surface and
the  i are the Anpassung. The excitation amplitudes �i

are obtained from the boundary conditions at the top
surface of the crystal. These require that the amplitude
of the directly transmitted beam is 1 and the amplitudes
of the diffracted beams are 0. From (6), it can be seen
that, since C is unitary, �i � Ci�

0 . At the exit surface of
the crystal, the Bloch waves decouple into plane waves
again. At this transition, the tangential components
remain unchanged and therefore the amplitude of the
beam g for a crystal of thickness t is obtained from (6) as

vg�t� �
P

i

�iCi
g exp�i it�: �7�

Introducing the vector v � �vg�, we can write (7) in the
compact form

v � Su: �8�
The vector u � ��g0� characterizes the incident beam
and

S � exp�i�1=2K�At� � C�exp�i it��DCy � C��i�DCy �9�
is the scattering matrix, where once again � �D denotes a
diagonal matrix. The scattering matrix relates the inci-
dent electron wave at the entrance surface of the crystal
to the elastically scattered or diffracted wave at the exit
surface of the crystal of thickness t (Humphreys, 1979).
Schematically, we can represent S as

S �

..

. ..
. ..

. ..
. ..

.

. . . Sh;h Sh;g Sh;0 Sh;ÿg Sh;ÿh . . .

. . . Sg;h Sg;g Sg;0 Sg;ÿg Sg;ÿh . . .

. . . S0;h S0;g S0;0 S0;ÿg S0;ÿh . . .

. . . Sÿg;h Sÿg;g Sÿg;0 Sÿg;ÿg Sÿg;ÿh . . .

. . . Sÿh;h Sÿh;g Sÿh;0 Sÿh;ÿg Sÿh;ÿh . . .

..

. ..
. ..

. ..
. ..

.

0BBBBBBBBBB@

1CCCCCCCCCCA
�10�

with the matrix elements

Sg;h �
P

i

Ci
g exp�i it�Ci�

h : �11�

Because of the hermiticity of A, the scattering matrix S
is unitary. It is also obvious from (9) that the eigenvec-
tors of S are just those of A.

3. Obtaining the matrix A from a knowledge of S
From (9), we can write

A � 2K

it
ln�S� � 2K

it
C ln��i�DCy �

2K

it
C�i it�DCy: �12�

Therefore, knowing S, we can obtainA and after further
evaluation the crystal potential V�r� via the Fourier
expansion

V�r� � �h- 2=2m�P
g

Ug exp�ig � r� �P
g

Vg exp�ig � r�:

�13�
However, without restrictions on the domain, the loga-
rithm is not a unique function and yields a manifold of
solutions,

i it � i��i � 2ni��; ni � 0;�1;�2; . . . : �14�
It is obvious that the determination of A via (12)
requires knowledge of all the complex elements of S. We
assume that they have all been measured (both ampli-
tude and phase). In other words, the phase problem has
been solved and what remains is the inversion problem
of obtaining A from S. Diagonalization of S yields not
only the eigenvectors of S but also those of A. Hence, if
we can ®nd the set of parameters f ig in (12) unam-
biguously [i.e. resolve the ambiguities expressed in (14)],
then all of A can be reconstructed via the spectral
representation given by (5).

In a general case, the knowledge of all of the elements
of S is essential for an unambiguous determination of A
via inversion. This is the fundamental reason why
methods of inversion based on limited information
about S, e.g. only the central column of S is known, fail
in general when the crystal is not thin (Gribelyuk, 1991;
Beeching & Spargo, 1993; Dorset, 1995; Peng & Wang,
1994; Peng & Zuo, 1995; Gilmore, 1996; Lentzen &
Urban, 1996; Van Dyck & Op de Beeck, 1996; Zou et al.,
1996; Zhu & Tafto, 1997). For the incident energies
(values of K) considered by these authors, if t is suf®-
ciently small we can restrict (9) to the lowest-order term

S � I � �it=2K�A; �15�
where I is the unit matrix. This establishes a one-to-one
relationship between elements of the central column of
S and the Fourier coef®cients in the central column of
A, namely Sg;0 � �it=2K�Ug, g 6� 0. This subset of the
Fourier coef®cients in A can give a limited resolution
but physical representation of the projected potential.
However, as soon as higher-order terms are required in
(9) (i.e. multiple scattering is included) then the Fourier
coef®cients obtained via the approximation (15) will no
longer necessarily yield a physical potential.

Consider the A matrix given by (2). Taking into
account the fact that we know the diagonal elements of
A (orientation information) and that A is hermitian and
has symmetries across the `anti-diagonal', we can count
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the number of open parameters in A. Hence, in general,
we can infer the minimum number of parameters in S
that need to be determined to construct all of S so that
we may then construct A from S. In an N-beam
approximation (N odd because of the assumption that,
for every reciprocal-lattice vector g, the vectorÿg is also
included in the representation) there are �N2 ÿ 1�=2
open real parameters in A. The number of open real
parameters in a column of S is 2N. For N > 3,
measurement of a single column of S therefore yields
less parameters than the number of open parameters in
A and the inversion from S to A becomes under-
determined.

Assume that all the elements of S have been deter-
mined experimentally. This can be performed uniquely
(up to an arbitrary overall phase) using either the
method of Spence (1998) based on coherent overlapping
CBED discs or from exit-surface wave functions. The
relationship between the exit-surface wave functions
and the elements of S is discussed in Appendix A, where
we also very brie¯y recapitulate, in our notation, the key
relation used by Spence to determine the phases of the
elements of S. Using either of these approaches, it is not
necessary to know the thickness of the crystal t explicitly
to determine S up to an arbitrary overall phase. The
issue that remains to be resolved is that of the ambi-
guities implicit in the inversion given in (12) and which
are explicitly expressed in (14). How should these
ambiguities be resolved so that a unique potential can be
retrieved from the scattering matrix? Firstly, we can
impose the known diagonals of the A matrix as
constraints:

�2K=it��lnS�g;g � Ag;g � ÿ�kt � g�2: �16�
This leads to a set of N linear equations in the N
unknown  i's given byP

i

jCi
gj2 i � ÿ�kt � g�2=2K; �17�

where the Ci
g are obtained by diagonalizing S.

Furthermore, we can exploit the fact that A has the
symmetries across its `anti-diagonal' given by (3) to
obtain a further set of homogeneous linear equations in
the N unknowns  i,

P
i

�Ci
gm

Ci�
gn
ÿ Ci

gN�1ÿn
Ci�

gN�1ÿm
� i � 0

with m 6� n if kt 6� 0; �18�
where gl refers to the reciprocal-lattice vector in the lth
row of C given by (4). Note that the eigenvectors of S
(and therefore also of A) are independent of the crystal
thickness t and hence (17) and (18) do not depend on t.

If kt 6� 0 then there are �N2 ÿ 2N � 1�=4 such
complex equations. In most cases, the systems of linear
equations (17) and (18) provide a linearly independent
set that will allow a unique solution for the eigenvalues
 i. This is not true for the symmetric orientation of the
incident beam (kt � 0), where the eigenvectors of S
satisfy (KaÈstner, 1993)

Ci
ÿg � Ci�

g : �19�
It is straightforward to show that (17) are then no longer
linearly independent and (18) become trivial. However,
by choosing the principal orientation to be other than
the symmetric one, a unique solution to the inversion
problem is possible using either the orientation infor-
mation alone in some instances or in addition the
symmetries in others. This will be made clearer by means
of numerical examples in the next section.

4. Model solutions of the inversion problem

We consider the [110] zone axis in GaAs as an example.
An energy of 400 keV is assumed for the incident elec-
trons. We will work in a seven-beam approximation for
simplicity of illustration but we emphasize that the
method works just as well for larger values of N. We will
give results for a crystalline slab of thickness 1000 AÊ but
the approach works for arbitrary thicknesses.

The hermitian nature of A suggests 21 independent
Fourier coef®cients in the A matrix given by (1). These
Fourier coef®cients, which have been used as input to
the direct problem, are shown together with the diag-
onal elements of A in Table 1 of Allen et al. (1998). The
Fourier coef®cients incorporate a Debye±Waller factor.
A temperature factor B � 0:6 AÊ 2 was used for both Ga
and As, as was performed by Lentzen & Urban (1996)
and subsequently by Allen et al. (1998). If in addition we

Table 1. The S matrix has been calculated for each of the principal orientations shown; the values of the integers ni in
equation (14) are shown for each orientation, then the outcome of retrieving the set  i uniquely using equations (17)

and then both equations (17) and (18) is noted

Case No. kt ni; i � 1; 2; . . . ; 7 Equation (17) Equations (17) and (18)

1 �0; 0; 0� 1 1 ÿ1 ÿ2 ÿ2 ÿ1 ÿ1 No No

2 �0; 0; �1� 1 1 ÿ3 ÿ1 ÿ2 ÿ1 ÿ2 No Yes

3 ��1; 1; 0� 1 1 ÿ3 ÿ3 ÿ1 ÿ2 ÿ2 No Yes

4 ��12; 1
2 ;

�1
2� 1 1 ÿ3 ÿ2 ÿ2 ÿ1 ÿ1 Yes Yes

5 �1; �1; 3
4� 1 1 ÿ3 ÿ3 ÿ2 ÿ1 ÿ1 Yes Yes
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assume that for each element Ug inA the element Uÿg is
also included, then we have the symmetries across the
`anti-diagonal' of A indicated in (3) and therefore only
12 independent Fourier coef®cients to be determined
(Allen et al., 1998).

The S matrix has been calculated for several principal
orientations of the incident beam. S is then diagonalized
to ®nd its eigenvectors (and eigenvalues). This also
yields, in each case, the eigenvectors of A. We then use
either (17) alone or both (17) and (18) to determine the
parameters f ig. If they are found unambiguously then
A can immediately be correctly reconstructed via(6).

We solve the set of linear equations to obtain the f ig
using the method of singular-value decomposition
(SVD) as discussed by Press et al. (1992). This allows us
to check whether the set of equations (17) has a coef-
®cient matrix with determinant unequal to zero. If the
determinant is zero, we can diagnose precisely what the
problem is and easily examine whether using (17) and
(18) together yields a unique set f ig, since the SVD
method easily accommodates the solution of more linear
equations than unknowns.

The S matrix has been calculated for each of the
principal orientations shown in Table 1. The values of
the integers ni in (14) are shown for each orientation.
Then the outcome of retrieving the set f ig correctly
(uniquely) using (17) and then both (17) and (18) is
noted. As expected, there is insuf®cient information to
determine the  i in the symmetric orientation. When
kt � �00�1�, i.e. the re¯ection (002) is in the exact Bragg
orientation (case 2), then there is still suf®cient
symmetry in the system to render equations (17) linearly
dependent. However, addition of the symmetry
constraints, equations (18), determines the f ig uniquely.
Tilting along the �1�10� direction gives similar results.
Tilting so that the re¯ection 1�11 is in the exact Bragg
orientation removes symmetries in the system so that
now equations (17) are already suf®cient to determine
the f ig uniquely. The arbitrary orientation given in case
5 also breaks symmetries in such a way that the orien-
tation constraints are suf®cient to solve for the f ig.
Only with the symmetric orientation as the principal one
is it not possible to uniquely determine the f ig and

hence to retrieve the model input potential correctly.
This potential is shown in Fig. 4(a) of Allen et al. (1998).

In Table 2, we give more details for case 4 in Table 1.
Shown are the phases of the eigenvalues of S (the
eigenvalues are unimodular), the integers ni in (14) and
the corresponding  i which are retrieved uniquely in the
inversion process via (17).

5. Summary and conclusions

We have shown that for a choice of principal incident
orientation other than kt � 0, i.e. other than an exact
zone-axis orientation (or the symmetric orientation for a
systematic row), the projected potential can be recov-
ered uniquely from the scattering matrix S corre-
sponding to that principal orientation for a single
thickness and energy. The solution of the phase and
inversion problems can be summarized as follows.

(i) For a principal orientation other than kt � 0, all
the complex elements of the scattering matrix S are
measured using a through-tilt series of measurements at
the principal and well de®ned secondary orientations of
the incident beam. Either data from coherent over-
lapping CBED discs or image intensities measured in a
through-focus series to determine exit plane-wave
functions may be used to determine S up to an arbitrary
overall phase.

(ii) S is then diagonalized to obtain its eigenvectors
and eigenvalues f�ig. The eigenvectors of S are just
those of A.

(iii) The eigenvalues f ig of A are obtained uniquely
using (17) (containing known information about the
principle orientation in the diagonal of A) and (18)
(derived from general symmetries of A across its `anti-
diagonal').

(iv) The matrix A is then constructed (uniquely) from
its eigenvectors and eigenvalues using the spectral
representation of A given by (5).

(v) The off-diagonal elements of A are the Fourier
coef®cients in the expansion for the projected potential
given by (13).

In conclusion, two approaches to the phase and
inversion problems in dynamical electron diffraction are
available. Either one proceeds from the moduli of the
elements of S only or one also performs measurements
to determine the phases (e.g. via the CBED technique or
via methods to determine the exit-surface wave func-
tions). The former approach is experimentally more
straightforward because it requires the measurement of
intensities in simple point diffraction patterns only.
However, in that case one must solve sets of nonlinear
equations and the phase and inversion problems are
intertwined. If the phase problem is solved using
experimental data sensitive to the phases, then the
inversion step can be accomplished by solving a set of
linear equations and the uniqueness of the projected
potential is established in a straightforward manner.

Table 2. The phase of the eigenvalues of the S matrix for
case 4 in Table 1 (the eigenvalues are unimodular), the
value of the corresponding ni in equation (14) and the

corresponding  i obtained from equations (17)

i �i ni  i �AÊ ÿ2�
1 2.06683 1 0.00835
2 ÿ0.77755 1 0.00551
3 2.87168 ÿ3 ÿ0.01598
4 0.36297 ÿ2 ÿ0.01220
5 1.13330 ÿ2 ÿ0.01143
6 ÿ1.51177 ÿ1 ÿ0.00779
7 ÿ0.95405 ÿ1 ÿ0.00724
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APPENDIX A

Firstly we show how the elements of the S matrix in (10)
are obtained from measurements of wave functions at
the exit surface. Let us assume that the principal inci-
dent direction of the incident beam is de®ned by the
wavevector K. The inwardly directed entrance surface
unit normal n̂ is along the z direction. Assume that the
origin is on the entrance surface. Any position vector r
can be written as r � �rxy; z�, where rxy is a vector in the
xy plane (parallel to the entrance and exit surfaces of the
crystalline slab). For incident orientations related to the
principal one by tilts of a reciprocal-lattice vector h
(including 0) we may rewrite (6) in the form

 �K� h; rxy; z�
� exp�i�K� h� � r�P

g

exp�ig � r�

�P
i

Ci�
0 �K� h�Ci

g�K� h� exp�i i�K� h�z�; �20�

where the dependence of Ci�
0 , Ci

g and  i (and hence  )
on K� h is explicitly shown. Since h is a reciprocal-
lattice vector, we have the following relations (KaÈstner,
1993):

Ci�
0 �K� h� � Ci�

h �K�;
Ci

g�K� h� � Ci
g�h�K�;

 i�K� h� �  i�K�:
�21�

Substituting these relations into (20) and using (11), we
obtain the wave function at the exit surface for a crys-
talline slab of thickness t:

 �K� h; rxy; t� � exp�iK � rxy� exp�iK � n̂t�
�P

g�h

exp�i�g� h� � rxy�Sg�h;h�K; t�;

�22�
using the assumption that g and h are in the xy plane. By
Fourier transformation, it follows that

Sg�h;h�K; t� � �exp�ÿiK � n̂t�=Ac�
R
Ac

 �K� h; rxy; t�

� exp�ÿi�K� g� h� � rxy� d2rxy; �23�
where Ac is the area of the unit cell projected onto the
xy plane. By appropriate choices of g, we can therefore
obtain, from the exit-surface wave function for the
orientation de®ned by K� h, all complex elements of
the column of S labelled by h ± see (10). If t is not known
then S is still determined up to an arbitrary overall
phase by (23).

Lastly, we brie¯y give the key relation that is used in
the method of coherent overlapping CBED discs
(Spence, 1998) using the notation of this paper. Consider
two adjacent columns of the S matrix in (10), say those
labelled by g and h. We can determine the relative phase
of the S-matrix elements in the columns labelled g and h

and in the same row f by considering the overlapping
CBED discs f 0 and f 00 such that f � f 0 � g � f 00 � h. The
(measured) intensity at a point in the region of overlap
of the CBED discs is given by

I�rxy; t� � jSf0�g;gj2 � jSf00�h;hj2 � 2jSf0�g;gjjSf 00�h;hj
� cos��f 0 ÿ f 00 � gÿ h� � rxy � �f0�g;g ÿ �f00�h;h�:

�24�
Equations (21) have been used to refer all S-matrix
quantities back to that at the principal orientation. The
quantities �f 0�g;g and �f00�h;h are the required phases of
the S-matrix elements. The practical implementation of
such relations to uniquely determine the phases of all
the elements of S via the solution of a set of linear
equations has been discussed in detail and by example in
Spence's paper. The moduli of the S-matrix elements
can be obtained from a point diffraction pattern without
overlap of adjacent orders. Note that, while the moduli
and phases of S-matrix elements in (24) depend on the
thickness of the crystal t, it is not necessary to know t
explicitly in determining S.
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